Pore-forming toxins induce multiple cellular responses promoting survival.
نویسندگان
چکیده
Pore-forming toxins (PFTs) are secreted proteins that contribute to the virulence of a great variety of bacterial pathogens. They inflict one of the more disastrous damages a target cell can be exposed to: disruption of plasma membrane integrity. Since this is an ancient form of attack, which bears similarities to mechanical membrane damage, cells have evolved response pathways to these perturbations. Here, it is reported that PFTs trigger very diverse yet specific response pathways. Many are triggered by the decrease in cytoplasmic potassium, which thus emerges as a central regulator. Upon plasma membrane damage, cells activate signalling pathways aimed at restoring plasma membrane integrity and ion homeostasis. Interestingly these pathways do not require protein synthesis. Cells also trigger signalling cascades that allow them to enter a quiescent-like state, where minimal energy is consumed while waiting for plasma membrane damage to be repaired. More specifically, protein synthesis is arrested, cytosolic constituents are recycled by autophagy and energy is stored in lipid droplets.
منابع مشابه
More Than a Pore: The Cellular Response to Cholesterol-Dependent Cytolysins
Targeted disruption of the plasma membrane is a ubiquitous form of attack used in all three domains of life. Many bacteria secrete pore-forming proteins during infection with broad implications for pathogenesis. The cholesterol-dependent cytolysins (CDC) are a family of pore-forming toxins expressed predominately by Gram-positive bacterial pathogens. The structure and assembly of some of these ...
متن کاملReduction of Streptolysin O (SLO) Pore-Forming Activity Enhances Inflammasome Activation
Pore-forming toxins are utilized by bacterial and mammalian cells to exert pathogenic effects and induce cell lysis. In addition to rapid plasma membrane repair, macrophages respond to pore-forming toxins through activation of the NLRP3 inflammasome, leading to IL-1β secretion and pyroptosis. The structural determinants of pore-forming toxins required for NLRP3 activation remain unknown. Here, ...
متن کاملBacterial Control of Pores Induced by the Type III Secretion System: Mind the Gap
Type III secretion systems (T3SSs) are specialized secretion apparatus involved in the virulence of many Gram-negative pathogens, enabling the injection of bacterial type III effectors into host cells. The T3SS-dependent injection of effectors requires the insertion into host cell membranes of a pore-forming "translocon," whose effects on cell responses remain ill-defined. As opposed to pore-fo...
متن کاملSignaling beyond Punching Holes: Modulation of Cellular Responses by Vibrio cholerae Cytolysin
Pore-forming toxins (PFTs) are a distinct class of membrane-damaging cytolytic proteins that contribute significantly towards the virulence processes employed by various pathogenic bacteria. Vibrio cholerae cytolysin (VCC) is a prominent member of the beta-barrel PFT (beta-PFT) family. It is secreted by most of the pathogenic strains of the intestinal pathogen V. cholerae. Owing to its potent m...
متن کاملThe bicomponent pore-forming leucocidins of Staphylococcus aureus.
The ability to produce water-soluble proteins with the capacity to oligomerize and form pores within cellular lipid bilayers is a trait conserved among nearly all forms of life, including humans, single-celled eukaryotes, and numerous bacterial species. In bacteria, some of the most notable pore-forming molecules are protein toxins that interact with mammalian cell membranes to promote lysis, d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular microbiology
دوره 13 7 شماره
صفحات -
تاریخ انتشار 2011